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Highly Asymmetric Electrolytes in the Associative
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The associate mean-spherical approximation (AMSA) is used to derive the
closed-form expressions for the thermodynamic properties of an (n+m)-compo-
nent mixture of sticky charged hard spheres, with m components representing
polyions and n components representing counterions. The present version of the
AMSA explicitly takes into account association effects due to the high asym-
metry in charge and size of the ions, assuming that counterions bind to only one
polyion, while the polyions can bind to an arbitrary number of counterions.
Within this formalism an extension of the Ebeling�Grigo choice for the associa-
tion constant is proposed. The derived equations apply to an arbitrary number
of components; however, the numerical results for thermodynamic properties
presented here are obtained for a system containing one counterion and one
macroion (1+1 component) species only. In our calculation the ions are pic-
tured as charged spheres of different sizes (primitive model) embedded in a
dielectric continuum. Asymmetries in charge of &10:+1, &10:+2, &20:+1,
and &20:+2 and asymmetries in diameter of 2 :0.4nm and 3:0.4nm are studied.
Monte Carlo simulations are performed for the same model solution. By com-
parison with new and existing computer simulations it is demonstrated that the
present version of the AMSA provides semiquantitative or better predictions for
the excess internal energy and osmotic coefficient in the range of parameters
where the regular hypernetted chain (HNC) and improved (associative) HNC
do not yield convergent solutions. The AMSA liquid�gas phase diagram in the
limit of complete association (infinitely strong sticky interaction) is calculated
for models with different degrees of asymmetry.
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mean spherical approximation; osmotic coefficient.
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I. INTRODUCTION

It is our pleasure to dedicate this paper to George Stell whose fundamental
work in statistical mechanics yielded considerable progress in the theory of
strongly interacting solutions.

Physico-chemical properties of charged hard spheres, embedded in a
dielectric continuum to mimic electrolyte solutions, have been attracting
the attention of the liquid state research community for more than three
decades. The existence of a liquid�gas phase transition for a two-compo-
nent mixture of charged hard spheres of equal size in a dielectric con-
tinuum has been indicated first in computer simulations.(1�3) The next
important contribution toward an understanding of this phenomenon was
the theoretical work of Stell and coworkers.(4, 5) Though the first computer
simulations have been performed as early as in 1971, (1�3) it is only recently
that reliable simulation data on the values of critical parameters became
available.(6�9) Concurrently, efforts have been focused on further develop-
ment of the theoretical description for a charged hard sphere system (see
ref. 10 and references therein). Though substantial progress has been
achieved along these lines recently, (10�12, 14, 13, 15, 16) a consistent theory
describing the RPM liquid�gas phase separation with reasonable quan-
titative accuracy is still emerging. It is therefore no surprise that a theoreti-
cal description of related systems, characterized by strong asymmetry in
charge and size, is even less developed. Highly asymmetric electrolytes,
where the ions are described as charged hard spheres of different size and
charge, are used as models for micellar solutions, globular proteins and
colloidal dispersions.(17, 18) For these electrolytes (also called polyelec-
trolytes) strong attractive and repulsive Coulombic forces acting between
the ions are typical. These forces are primarily responsible for the non-ideal
behaviour of polyelectrolyte solutions; the mobility and activity of small
ions are reduced considerably below their values in bulk simple electrolytes.

In this work an electrolyte solution is treated as a multicomponent
mixture of charged hard spheres immersed in a dielectric continuum
representing the solvent. A number of theoretical methods have been
applied to describe the equilibrium properties of these solutions.(17, 18)

Among them the hypernetted chain (HNC) theory and the MSA have been
used most extensively.(19�42) In comparison with computer simulations, the
HNC approximation is found to be more accurate (for a review of integral
equation results see ref. 18). However, the solution of the HNC approxima-
tion has to be obtained numerically, while the MSA has a relatively simple
analytical solution that provides explicit expressions for the direct correla-
tion function and thermodynamic properties.(43) For low asymmetry in
charge and size both approximate theories provide reliable results for the

244 Kalyuzhnyi et al.



equilibrium properties of these systems. However, the theories become less
reliable if the asymmetry in charge and size increases. Finally, there is a
range of the parameters corresponding to highly charged micelles and
colloids for which the HNC approximation does not yield convergent solu-
tions.(44) The region of parameters at which both HNC approximation and
MSA fail to provide descriptions of these systems is characterized by an
appreciable degree of macroion�counterion association.

Both the HNC approximation and the MSA are based on the Mayer
\-expansion. For strongly associating fluids an infinite number of terms in
the density expansion should be included to reproduce the correct low-den-
sity limit.(45) It is therefore unlikely that an approximation, based on a
regular one-density integral equation theory, will provide adequate results
for these strongly associating systems. Recently, a multidensity integral
equation theory which explicitly accounts for the association effects in ionic
systems, (45, 46) and in particular for ionic systems characterized by high
asymmetry in charge and size, (35, 39, 40) has been proposed. The corresponding
two-density version of the HNC approximation (we refer to it as the
associative HNC (AHNC) approximation), yields better agreement with
Monte Carlo data than the regular HNC approximation, and moreover,
the range of applicability of the theory is extended toward lower concentra-
tions. Unfortunately, the AHNC approximation is not immune to con-
vergency problems (as associated with the regular HNC theory), especially
if divalent counterions are present in solution. In addition, the two-density
HNC theory is numerically quite complex; it is not convenient for daily
analysis of experimental data. In contrast the potential theories such as a
modified Poisson�Boltzmann theory(47) or a simple symmetric Poisson�
Boltzmann theory(48, 49) require few iterations for convergence. The
accuracy of these approximations for highly asymmetric electrolytes has
not yet been extensively tested, however, recent studies of the multicompo-
nent models(50, 51) show that both theories agree quite well with the Monte
Carlo simulations.

In the present work an alternative approach to the study of dilute
solutions of macroions and counterions is proposed. The theory is based
on a two-density version of the multidensity formalism for systems with
high asymmetry in interaction(35, 39) and an MSA-type of closure condi-
tion.(41, 52, 53) We refer to this extension of the MSA as the associative MSA
(AMSA).(52, 53) Within the AMSA formalism the associative effects are
taken into account via an additional ``sticky'' term in the closure, a term
which causes the formation of clusters of particles with each cluster consist-
ing of one polyion and an arbitrary number of counterions. Within this for-
malism, an extension of the Ebeling�Grigo(59) choice for the association
constant is proposed. An analytical solution of the AMSA for the primitive
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model of a highly asymmetric electrolyte solution has been derived
recently.(41) Similarly, as in the case of the regular MSA, (43) the electrostatic
part of the solution reduces to the solution of one nonlinear algebraic
equation for the MSA-like scaling parameter 1. In the present paper, the
general solution of the AMSA(41) is used to derive the closed form analyti-
cal expressions for the Helmholtz free energy, osmotic coefficient, and
chemical potential. Our derivation is based on the extension of the method
proposed previously in ref. 54. While the newly derived equations apply to
an arbitrary number of components, the numerical results to be presented
here apply to the simplest possible system; i.e., to a solution of macroions
and counterions (1+1 component). Asymmetries in charge of &10:+1,
&10:+2, &20:+1, and &20:+2, and asymmetries in diameter of
2:0.4nm and 3:0.4nm were considered. In parallel, the Monte Carlo com-
puter simulations were performed for the same system.

This paper is organized as follows. After the Introduction, the AMSA
and its analytical solution is reviewed in Section II. In Section III, we
derive the relations for thermodynamic properties in the associative mean-
spherical approximation. In the next section (IV) we discuss the equations
valid for the two-component system containing macroions and counterions,
and in Section V the corresponding numerical results are presented. Finally,
we offer a few concluding remarks in Section VI.

II. ASSOCIATIVE MSA FOR THE PRIMITIVE MODEL OF A
HIGHLY ASYMMETRIC ELECTROLYTE SOLUTION

We consider a model which consists of an (m+n)-component mixture
of charged hard spheres of species p1 ,..., pi ,..., pm with diameter _pi

, number
density \pi

and charge ezpi
representing the polyions, and species

c1 ,..., ci ,..., cm with diameter _ci
, number density \ci

and charge ezci

representing the counterions. For convenience we shall also use the indices
a, b, d,... to denote all m+n species. The mixture is electroneutral:

:
a

\aza=0 (1)

The two-density version of the associative MSA for the model at hand
can be written in the following form:

cab(r)= &
;e2

=0

zazb

r
Eab for r>_ab (2)

hab(r)= &Eab+
tab

2?_ab
$(r&_ab) for r�_ab (3)
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where _ab= 1
2 (_a+_b), =0 is the dielectric constant of the continuum,

;=1�kBT, and Eab is the matrix with the elements [Eab]:;=E :;
ab=$:0 $;0 .

Further, hab(r) and cab(r) are the matrices with the elements being the par-
tial total h:;

ab(r) and direct c:;
ab(r) correlation functions

hab(r)=\h00
ab(r) h01

ab(r)
h10

ab(r) h11
ab(r)+ , cab(r)=\c00

ab(r) c01
ab(r)

c10
ab(r) c11

ab(r)+ (4)

The superscripts : and ; assume the values 0 and 1 and denote the bonded
(:=1) and unbonded (:=0) states of the corresponding particle, and tab

is the matrix with the elements

tab=$api
$bcj \0

0
tpi cj

0 ++$aci
$bpj \ 0

tci pj

0
0+ (5)

where tpi cj
=Kpi cj

g00
pi cj

, g00
picj

(_pi cj
+) and Kpi cj

describes the strength of the
associative interaction.

The total and direct correlation functions satisfy the following
Ornstein�Zernike (OZ) equation

hab(r)=cab(r)+:
d

\d | dr1 cad ( |r1&r| ) :dhdb(r1) (6)

where

:a=\ 1
:a

:a

0 + (7)

:a=\0
a �\a (:pi

=1) and \0
a is the ``density'' of the unbonded counterions,

which is defined by

\ci
=\0

ci _1+2 :
m

k

\pk
_ci pk

tci pk& (8)

Recently, a general solution of the AMSA for a multicomponent
mixture of polyions and counterions was published.(41) The derivation will
be very briefly repeated here; the interested readers are referred to the
original publication for more details.

The solution was obtained by utilizing Baxter's technique, which
factorizes the initial OZ equation (6) into the two parts

Sab(r)=Qab(r)&:
d

\d | dr1 Qad (r1) :dQT
bd (r1&r) (9)
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and

Jab(r)=Qab(r)+:
d

\d | dr1 Jad ( |r1&r| ) :d Qdb(r1) (10)

where T denotes the transpose matrix. The projections Sab(r) and Jab(r)

Jab(r)=2? |
�

r
ds shab(s) (11)

Sab(r)=2? |
�

r
ds scab(s) (12)

satisfy the boundary conditions

Jab(r)=?r2Eab+Jab for r�_ab (13)

Sab(r)=&
;e2

=0

zbzae&+ |r|

+
Eab for r>_ab (14)

obtained from (2) and (3). Here Jab=Jab(0) and the limit +=0 is to be
taken at the end of the calculation.

From the analysis of Eqs. (9) and (10) for Qab(r) we have

Qab(r)=[Qab(r)+tab] %(_ab&r)& ẑa âb for *ab<r (15)

where *ba= 1
2 (_b&_a) and the function Qab(r) is defined in the range

*ba<r<_ab by

Qab(r)= 1
2Ab(r&_ab)(r&*ba)+;ab(r&_ab) (16)

Here âa and ẑa are the row and column vectors, respectively

âa=(a0
a , a1

a), ẑa=\za

0 +
Coefficients of the Baxter Q-function Ab , ;ab and âb can be expressed in
terms of two parameters, i.e., the fraction of the free particles :a and the
screening AMSA parameter 1.(41, 43, 55) We obtain
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;:;
ab=$:0 _?_b

2
$;0+M 0

aa;
b&+(1&$:0) B:

aa;
b (17)

A:;
b =2$:0a;

b 'B+$:0$;0

2?
2 _1+`2

?_b

22 &&
2?
2

$:0 t;
b (18)

a0
a=

1
D _&2M 0

a&2_a'B+2 :
d

\d:d t01
ad (M 0

d_d+zd)& (19)

a1
a=

1
D _2 :

d

\d t10
ad (_dN T

d +zd)& (20)

where

_a M 0
a=X 0

a&za , B0
a=N T

a &:aB1
a&

?
6

:
d

\d_3
dN T

d +/2 2, _a B1
a=X 1

a

(21)

_a N T
a =X T

a &za , X T
a =X 0

a+:aX 1
a (22)

D=:
d

\d (_d N T
d +zd)2&:

d

\d (_d:dB1
d)2 (23)

/2=:
d

\d zd_2
d , 2=1& 1

6?`3 , `k=:
d

\d_k
d (24)

and unknowns X 0
a and X 1

a satisfy the following set of linear equations:

:
d

Mad X� d=ẑa (25)

In this equation X� a is a column vector X� a=( X a
0

Xa
1) and Mab is the following

matrix

Mab=(1+1 T_b) $ab+\b_a _ ?
22

_b_aEab&tab& :b (26)

By taking into account the structure of matrix tab for the model at hand,
we can obtain the solution for this set of equations in a closed form. As a
result we get

X :
xi

=
{:

xi
(z)&'B{:

xi
(_2)

1+_xi
1

(:=0, 1; x=p, c) (27)
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where

'B=
(?�22)[{p(z)+{c(z)]

1+(?�22)[{p(_2)+{c(_2)]
(28)

{x(v)=:
k

\xk
_xk

{0
xk

(v)+:xk
{1

xk
(v)

1+_xk
1

(v=z, _2) (29)

{0
pi

(v)=vpi
+_pi

:
k

\ck
:ck

tpi ck
vck

1+_ck
1

(30)

{1
pi

(v)=0 (31)

{1
ci

(v)

_ci

=:
m

k

\pk

tci pk
vpk

1+_pk
1

+:
m

k

\pk
_pk

tci pk

1+_pk
1

:
m

l

\cl
:cl

tpk cl
vcl

1+_cl
1

(32)

Finally, the screening parameter 1 follows from the solution of the non-
linear algebraic equation

1 2=?
;e2

=0 {:
m

k

\pk
(X 0

pk
)2+:

n

k

\ck
[(X 0

ck
)2+2:ck

X 1
ck

X 0
ck

]= (33)

where the fraction of monomers :ci
satisfies Eq. (8). This equation contains

the contact value of the partial pair correlation function g00
ci pj

(r)

2?_ci pj
g00

ci pj
(_+

ci pj
)=2?_ci pj

ghs
ci pj

(_+
ci pj

)&2?
;e2

=0

X 0
ci

X 0
pj

&
?
2

_ci
tpj

(34)

Here, ghs
ci pj

(_+
ci pj

) is the corresponding hard-sphere contact value and

tpj
=:

l

\cl
_cl

:cl
tcl pj

III. THERMODYNAMIC PROPERTIES

Thermodynamic properties will be obtained through the energy route
by generalization of the method developed for a fluid of dimerizing charged
hard spheres.(54) From the standard expression for the excess internal
energy per unit volume, (43)

2E=2? :
ab

\a\b |
�

0
dr r2U (C)

ab (r) gab(r) (35)
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we get

;2E=
e2

=
:
a

\azaN T
a (36)

where N T
a is defined by Eq. (22).

The excess Helmholtz free energy per unit volume is then(43, 56)

;2A=;2E&|
1

0
d1 $ ;$

�
�1 $

2E (37)

The internal energy depends on screening parameter 1 explicitly, and
also through the fraction of monomers :ci

and parameter tci pj
. Since these

two quantities appear only in the form of the product :ci
\ci

tci pj
, the expres-

sion for the Helmholtz free energy (37) can be written as follows

;2A=;2E&|
1

0
d1 $ ;$ \�2E

�1 $ +\d

&|
1

0
d1 $ ;$ :

ik \
�2E

�:ci
\ci

tci pk
+1

�:ci
\ci

tci pk

�1 $

(38)

where subscripts \d and 1 indicate that differentiation is carried out at con-
stant values of the product :ci

\ci
tci pk

and screening parameter 1. From (36)
and (22) we obtain

; \�2E
�1 +\d

=;* :
a

\aza

_a \�X T
a

�1 +\d

(39)

where ;*=;e2�=0 . The expression for (�X T
a ��1)\d

can be derived from the
set of equations (25). In this respect it is convenient to rewrite this set in
a form which involves the sum of X 0

a and X 1
a , i.e., X T

a =X 0
a+:aX 1

a . We
obtain

:
b

MabX T
b =za+_aT 0

a(z) (40)

where

Mab=$ab(1+_a1)+
?

22
_a \b_b[T 0

a(_2)+_a] (41)

and

T 0
a(x)=:

b

\b
:b t01

ab+:a t10
ab

1+_b 1
{0

b(x) (42)
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By differentiation of Eq. (40) with respect to 1 at constant :ci
\ci

tci pj
we get

the following expression for �X T
a ��1

&\�X T
a

�1 +\d

=:
j

_pj
M&1

apj _X T
pj

+:
k

\ck

:ck
_ck

X 0
ck

tpjck

1+_ck
1 &

+:
j

_cj
M&1

acj _X T
cj

+:cj
:
k

\pk

_pk
X 0

pk
tcj pk

1+_pk
1

+:cj
:
k

:
l

\pk
\cl

:cl
_pk

_cl
X 0

cl
tcj pk

tpkcl

(1+_pk
1)(1+_cl

1)& (43)

By substituting this expression into (39) and using (41) to calculate the
inverse of matrix Mab we arrive finally at the following relation(42)

; \�2E
�1 +\d

=&
1 2

?
(44)

which gives us the possibility to calculate the first integral in (38)

;2A=;2E+
1 3

3?
&2;* :

ik

\pk
:ci

\ci
tci pk

X 0
pk

X 0
ci

+2 :
ik

|
1

0
d1 $ ;$:ci

\ci
\pk

tci pk

�;*X 0
pk

X 0
ci

�1
(45)

In this expression (45), the last two terms on the right hand side appear as
a result of the modification of the second integral in Eq.(38), by using the
equality

; :
ik \

�2E
�:ci

\ci
tci pk

+1

�:ci
\ci

tci pk

�1
=2;* :

ik

\pk
X 0

pk
X 0

ci

�:ci
\ci

tci pk

�1
(46)

This relation can be obtained after straightforward but tedious algebra by
a direct differentiation of the equation (36) for the excess internal energy.

To evaluate the second integral in (38) we will follow ref. 54 and intro-
duce the following quantity

;2AMAL=:
i

\ci
ln :ci

(47)
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which after differentiation gives

�;2AMAL

�1
= &2 :

ij

:ci
\ci

\pj
_ci pj

tci pj

� ln g00
ci pj

�1
(48)

Here the relation between the densities (8) has been used. Now, assuming
the exponential approximation for the contact value g00

ci pj
, i.e.,

g00
ci pj

=\g (hs)
ci pj

&
_ci

22_ci pj

r (ref )
pj + exp {&

;*
_ci pj

X 0
ci

X 0
pj

&
_ci

22_ci pj

(tpj
&t (ref )

pj
)= (49)

and substituting it into Eq. (48) we obtain

�;2AMAL

�1
=2 :

ij

:ci
\ci

\pj
tci pj

�;*X 0
ci

X 0
pj

�1
+

1
22

:
j

\pj

�t2
pj

�1
(50)

This result allows us to write the final expression for the difference in
the Helmholtz free energy between the original and reference system

;2A=;2E+
1 3

3?
&2;* :

ik

\pk
:ci

\ci
tci pk

X 0
pk

X 0
ci

+;(2AMAL&2A (ref )
MAL)

&
1

22
:
j

\pj
[(tpj

)2&(t (ref )
pj

)2] (51)

Here, the reference system is chosen to be equal to the original system but
with zero charges (za=0) on the ions. The values of Kci pj

remain
unchanged. In (49) and (51) t (ref )

pj
and 2A (ref )

MAL correspond to tpj
and 2AMAL

for such a reference system.
Application of expression (51) for the Helmholtz free energy requires

a thermodynamic description of the reference system; the properties of the
latter can be obtained as described before.(57) The virial expansion for the
Helmholtz free energy of the system with uncharged particles (ions stripped
of their charge) A(ref ) in excess to that of the hard-sphere system Ahs is
given by

;(A(ref )&Ahs)=:
i

\ci
ln : (ref )

ci
&\ci

: (ref )
ci

+\ci
&

1
V

(c (0)
ref &c (0)

hs ) (52)

where

1
V

(c (0)
ref &c (0)

hs )=2 :
ij

\pj
: (ref )

ci
\ci

_cipj
t (ref )

ci pj
(53)

253Highly Asymmetric Electrolytes in the Associative MSA



and :(ref )
ci

is the fraction of unbonded counterions of the reference system.
Taking into account the relation between the densities (8) we have

;(A(ref )&Ahs)=:
i

\ci
ln : (ref )

ci
=;2A (ref )

MAL (54)

Finally the expression for the Helmholtz free energy of the system in excess
to that of the hard-sphere system is:

;2A=;2E+
1 3

3?
&2;* :

ik

\pk
:ci

\ci
tci pk

X 0
pk

X 0
ci

+;2AMAL

&
1

22
:
j

\pj
[(tpj

)2&(t (ref )
pj

)2] (55)

Another important thermodynamic quantity is the osmotic coefficient
.. To derive this property we use the standard thermodynamic relation

2.=\ _ �
�\ \

2A
\ +&1

(56)

where \=�a \a . By using (36), (47), and 8 we get

\�;2E
�\ +1

=\�;2E
�\ +1, \d

+2;* :
ik

X 0
pk

X 0
ci

\pk \
�\ci

:ci
tci pk

�\ +1
(57)

\�;2AMAL

�\ +1
=:

i

xci
ln :ci

&2 :
ij

xpj
:ci

\ci
_ci pj

tci pj

&2 :
ij

\pj
:ci

\ci
_ci pj

tci pj

�
�\ _ln \ g (hs)

ci pj
&

_ci

22_ci pj

t (ref )
pj +

&
;*

_ci pj

X 0
ci

X 0
pj

&
_ci

22_ci pj

(tpj
&t (ref )

pj
)& (58)

where xa=\a �\. By substituting (55), (57), and (58) into (56) we obtain
the expression for the excess osmotic coefficient

2.=&
1 3

3?\
&;*

2
?\

('B)2&2 :
ij

xpj
:ci

\ci
_ci pj

tci pj

__1+\
�
\

ln \ g (hs)
ci pj

&
_ci

22_ci pj

t (ref )
pj +&

+
1&2
2\22 :

j

\pj
(tpj

&t (ref )
pj

)2&
1
2

:
j

\pj
(tpj

&t (ref )
pj

)
�t (ref )

pj

�\
(59)
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Knowing the Helmholtz free energy and the osmotic coefficient enables us
to write down the expression for the mean activity coefficient. It follows
directly from the thermodynamic relation

2 ln #+&=;
2A
\

+2. (60)

IV. TWO-COMPONENT CASE: A SOLUTION OF MACROIONS
AND COUNTERIONS

To illustrate the general results obtained in the previous sections we
consider a system which consists of one species representing polyions and
another species representing counterions. The system as whole is elec-
troneutral.

A. Solution of the AMSA for the 2-Component Case

The set of nonlinear algebraic equations representing solution of the
AMSA will be reduced now to a set of two equations, i.e.,

1 2=?;*[\p(X 0
p)2+\c[(X 0

c )2+2X 0
c :cX 1

c]] (61)

and

:c+2\pKcp :c __cp g (hs)
cp &

_2
c(1&: (ref )

c ) \c

4\p_cp 2 &
_exp {&

;*
_cp

X 0
c X 0

p&
_2

c \c

4\p_2
cp 2

(: (ref )
c +:c)=&1=0 (62)

where g (hs)
cp =g (hs)

cp (_+
cp). The first equation (61) follows from the expression

for 1 (33) and the second one (62) is obtained from Eq. (8), in which the
exponential approximation for the contact value g00

pc is used. Both equa-
tions contain X 0

p , X 0
c and X 1

c as parameters. These quantities are related to
:c and 1 via Eq. (27). For the two-component case we have

X 0
p=1p _(zp&_2

p'B)+
\c_p

2\p_cp
(1&:c)(zc&_2

c 'B) 1c& (63)

X 0
c=1c(zc&_2

c 'B) (64)

:cX 1
c=

_c(1&:c)
2_cp

1cX 0
p (65)

255Highly Asymmetric Electrolytes in the Associative MSA



where 1a=(1+_a 1)&1, and

'B=

\p_pzp1p+\c_czc1c+((1&:c)�2_cp) \c(_2
pec+_2

c zp) 1p1c

+((1&:c)2�4_2
cp \p) \2

c _2
c _pzc1 2

c 1p

(22�?)+\p_3
p1p+\c_3

c 1c+((1&:c)�_cp) \c_2
p_2

c 1p1c

+((1&:c)2�4_2
cp \p) \2

c _4
c _p1 2

c 1p

(66)

The fraction of unbonded counterions for the uncharged system : (ref )
c is

given by

: (ref )
c =

2_cp

_2
c \cKcp _�B2+

2_2
c \cKcp

2_cp
&B& (67)

where

B=1+\2\p _cp g (hs)
cp &

_2
c \c

22_cp+ Kcp (68)

B. Thermodynamic Quantities

The expressions for the internal energy (36), Helmholtz free energy
(55) and osmotic coefficient (59) reduce for the two-component system to
the following form:

;2E=
e2

=0 _
\czc

_c
(X 0

c+zc+:cX 1
c)+

\pzp

_p
(X 0

p+zp)& (69)

;2A=;2E+
1 3

3?
&;*

1&:c

_cp
\cX 0

pX 0
c +;\c ln :c

&
1

22
_2

c \2
c

4\p_2
cp

(: (ref )
c &:c)(2&: (ref )

c &:c) (70)

\2.=&
1 3
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&
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('B)2+
1
2

_2
c \2

c

4\p _2
cp

(:c&: (ref )
c )

__1&2
22

(: (ref )
c &:c)+

�: (ref )
c

�\ &
&(1&:c) \c _1+\ \g (hs)

cp &
_2

c \c(1&:c)
4\p_2

cp 2 +
&1

_\
�g (hs)

cp

�\
+

_2
c \c

4\p_2
cp 2

�: (ref )
c

�\ +& (71)

where the derivative �: (ref )
c ��\ is obtained from (67).
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V. NUMERICAL RESULTS

In this section the numerical results for the thermodynamic properties
of a highly asymmetric electrolyte in the associated mean-spherical
approximation are presented. The expressions derived above were used to
calculate the excess internal energy and osmotic coefficient of the model
solution where the ions are depicted as charged hard-spheres. Four dif-
ferent model solutions were examined: (i) zp=&10, zc=+1, _p=2nm,
_c=0.4nm; (ii) zp= &10, zc= +2, _p=2nm, _c=0.4nm; (iii) zp=&20,
zc=+1, _p=3nm, _c=0.4nm; and (iv) zp=&20, zc=+2, _p=3nm,
_c=0.4nm. Two different values of ;* were used for the model (i), i.e.,
;*=0.7155nm and ;*=1.2nm. The latter value of ;* was used to model
the electrolyte in a solvent with a dielectric constant lower than that for
water. In all other examples (ii)�(iv) the value of ;* was set to 0.7155nm
to mimic an aqueous solution at 25%C.

Application of the equations derived in previous sections requires a
knowledge of the constant of the association Kab . There are several ways
to choose the value of association constant Kab .(13, 15, 58�61) In ref. 61 a con-
nection between Kab and the Ebeling�Grigo choice of association constant
was established and a corresponding scheme for its evaluation in the case
of a symmetrical electrolyte developed. According to this scheme parameter
Kpc was chosen as a part of the ionic second virial coefficient which is not
taken into account by the MSA. Unfortunately, direct application of the
scheme proposed in ref. 61 is not possible, since in the case of an asym-
metric ionic system it leads to divergency of the constant of association
Kpc . Therefore application of a certain resummation procedure is needed.
In the present study we used a modified version of the method proposed
earlier.(61) Our modification is based on the optimized cluster expansion(62)

which gives the following expression for the constant of association Kpc

XpXc"_pc Kpc=2? exp[&GMSA
pc ] :

ab

xaxb | r2

_[exp[GMSA
ab ]r(]&1&GMSA

ab (r)& 1
2 (GMSA

ab (r))2] dr (72)

where GMSA
ab (r)=hMSA

ab (r)&hhs
ab(r) is the MSA charge�charge correlation

function (screened potential in the optimized cluster expansion(62)),
Gpc=Gpc(_+

pc) and hMSA
ab (r) is the MSA pair correlation function for the

model under investigation. In the previous study(61) Gpc was chosen to be
equal to the contact value of the interionic interaction. In the framework
of the present scheme the contribution of the second virial coefficient is
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taken into account exactly. For the sake of simplicity hMSA
ab (r) has been

approximated as follows(63)

GMSA
ab (r)=;*

za zb

r(1+_a1 MSA)(1+_b 1 MSA)
exp[&}ab(r&_ab)] (73)

where 1 MSA is the MSA screening parameter and }2
ab=4?;* �a \az2

a . This
approximation is exact at low densities and is expected to be of reasonable
accuracy for the range of parameters studied in this work.

The accuracy of the proposed associated mean-spherical approxima-
tion was tested against computer simulations. New Monte Carlo simula-
tions were performed in a canonical ensemble with 64 macroions and an
equivalent number of counterions in the system, using the standard
Metropolis algorithm.(18, 35, 39, 40, 61) Long runs were needed to obtain
reliable results: the averages were taken over 35 to 50 million configura-
tions with at least 5 million attempted configurations spent for the equi-
libration. To avoid effects due to the finite size of the simulation cell the
Ewald summation method was used. The relative uncertainty in Monte
Carlo results is about 10 for the excess internal energies and from 2 to
40 for the osmotic coefficients.

Numerical results for the excess internal energy and osmotic coefficient
are presented in Figs. 1�4. Figures 1 and 2 show the excess internal energy

Fig. 1. Excess internal energy 2E=U for a 10:1 electrolyte (1), 10:1 electrolyte at
;*=1.2nm (2), and a 10 :2 electrolyte (3). Simulations are presented by symbols and the lines
denote theoretical results: AMSA (solid lines), MSA (long dashed lines), and HNC (short
dashed lines). The Monte Carlo results for 10:1 (1) and 10 :2 electrolytes (3) for macroion
concentrations cp=0.0001 M and cp=0.0005 M, are from ref. 40.

258 Kalyuzhnyi et al.



File: 822J 257017 . By:XX . Date:13:06:00 . Time:10:36 LOP8M. V8.B. Page 01:01
Codes: 1643 Signs: 1087 . Length: 44 pic 2 pts, 186 mm

Fig. 2. Excess internal energy 2E=U for a 20:1 electrolyte (1), and a 20 :2 electrolyte (2).
Simulations are presented by symbols and the lines denote theoretical results: AMSA (solid
lines), MSA (long dashed lines), and HNC (short dashed lines). The Monte Carlo results for
20:1 (1) and 20:2 electrolytes (2) for macroion concentrations cp=0.0001 M and
cp=0.0005 M, are from ref. 40.

for 10:1 and 10:2 electrolyte solutions and for 20 :1 and 20:2 electrolyte
solutions, respectively. Figures 3 and 4 present the corresponding results
for the osmotic coefficient. In all figures the symbols denote the Monte
Carlo results and the results of the AMSA theory are shown by the solid
line. For the sake of comparison we also present the corresponding MSA

Fig. 3. Osmotic coefficient .=PV�NkT for a 10:1 electrolyte (1), 10 :1 electrolyte at
;*=1.2nm (2), and a 10:2 electrolyte (3). Legend as for Fig. 1. The Monte Carlo results for
10:1 (1) and 10:2 electrolytes (3) for macroion concentrations cp=0.0001 M and
cp=0.0005 M, are from ref. 40.
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Fig. 4. Osmotic coefficient .=PV�NkT for a 20 :1 electrolyte (1), and a 20:2 electrolyte (2).
Legend as for Fig. 3. The Monte Carlo results for 20:1 (1) and 20:2 electrolytes (2) for
macroion concentrations cp=0.0001 M and cp=0.0005 M, are from ref. 40.

results (long dashed lines) and HNC approximation results (short dashed
lines) in the region where the convergent solution could be obtained. In the
latter case, the limiting concentration below which we have not been able
to obtain convergent results of the HNC approximation is pointed out by
an arrow.

In all cases studied in this contribution the AMSA follows the Monte
Carlo data for the excess internal energy reasonably well. Predictions of the
MSA theory are in a good agreement with computer simulations for
aqueous solutions with monovalent counterions (;*=0.7155nm). In this
case the MSA results coincide with the AMSA predictions. For stronger
couplings; i.e., for ;*=1.2nm or for solutions with divalent counterions
(zc=2), the MSA breaks down. Similar tendencies are observed for the
osmotic coefficient calculation. The agreement between the AMSA theory
and MC simulation is quantitative or semiquantitative only for solutions
with monovalent counterions and for c�0.001 M. The MSA results for the
osmotic coefficient coincide with those of AMSA in the case of aqueous
solutions with monovalent counterions (i.e., for ;*=0.7155nm). For 20 :2
electrolyte solutions AMSA gives only qualitative correct predictions for
this quantity.

The failure of the AMSA and other theories(40) to give an adequate
description of polyelectrolyte solutions with divalent (or trivalent) coun-
terions seem to be connected to the strong correlations between multivalent
counterions. Recent computer simulations (see also ref. 18 and references
therein) indicate that in solutions with monovalent counterions the macroions
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are distributed at larger distances from each other. In solutions with
divalent counterions the macroions come closer to each other and share a
layer of counterions, (64) while in solutions with trivalent counterions the
macroions form clusters.(65) This explains the success of the two-density
formalism in the case of solutions with monovalent counterions and also its
failure for systems containing multivalent counterions.

Finally, in Fig. 5 we present the liquid�gas phase diagram for the
primitive model of a highly asymmetric electrolyte solution in the limit of
complete association. In this limit all the counterions are bonded; the
average number of counterions bonded to a macroion is zp�zc and most of
such polyion�counterion clusters are neutral. Theoretical investigation(66)

and recent computer simulations(7, 67, 68) suggest that for the restrictive
primitive model the fraction of free ions is negligible in the vicinity of the

Fig. 5. Liquid�gas phase diagram in ;* versus ' coordinates. From the top to the bottom
at '=zp :zc=20:1 (_p :_c=10:1), 10 :1(7.071 :1), 5 :1(5:1), 3 :1(3.873:1), 2 :1(3.333:1).
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coexistence region. In this way, the equilibrium properties of the system are
mostly determined by the present of the neutral ionic clusters, to which the
ionic pairs give the main contribution. By assuming that in the complete
association limit all the polyion�counterion clusters are neutral, it is
possible to use the AMSA results to describe the liquid�gas separation for
highly asymmetric electrolytes. Five different models with the charge and
size ratio zp :zc(_p :_c)=20:1(10 :1), 10:1(7.071:1), 5:1(5:1), 3 :1(3.873:1),
2:1(3.333:1) were studied. For the models considered here, the value of the
polyion surface charge, i.e., the ratio zp �_2

p was kept constant. The results
presented in Fig. 5 show that increase in the asymmetry in charge and size
at constant polyion surface charge causes a decrease of the critical tem-
perature and critical density. Unfortunately, the computer simulation data
for these conditions are not available yet, and the predictions show in
Fig. 5 remain to be tested.

VI. CONCLUDING REMARKS

Currently there seems to be a growing interest in extending theoretical
techniques of the statistical mechanics of fluids to less simple systems such
as solutions involving macroions and small ions. Knowledge of such
systems is relevant to understanding the behaviour of surfactant micelles,
globular proteins, and colloidal suspensions. In these systems there is a
strong Coulombic interaction between the highly charged macroions and
small ions (with valency one or two) in solution. These (polyelectrolyte)
solutions can be reasonably well represented by a primitive model, where
the ions are modelled as charged hard spheres moving in a continuous
dielectric.

In this paper a closed form analytical expressions for the ther-
modynamic properties of the primitive model highly asymmetric electrolyte
solution are derived. The derivation is based on an analytical solution for
the two-density version of the associative MSA, as obtained recently. The
two-density theory assumes the counterions be singly bondable; each coun-
terion bonds to only one macroion. On the other hand, each macroion can
be bonded to an arbitrary number of counterions. This is assumed to be
good approximation for dilute and�or moderately charged systems; for
multivalent counterions present in the solution this assumption appears to
be less realistic. An extension of the Ebeling�Grigo choice for the associa-
tion constant is proposed for this formalism. The equations for ther-
modynamic properties presented in this study are general; they apply to an
arbitrary number of components. In this first study, however, we present
numerical results for the simplest possible model only, i.e., for a solution of
macroions and counterions. The models with asymmetry in charge of
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&20:+1, &20:2, &10:+1 and &10:2, and asymmetries in size of
2:0.4nm and 3:0.4nm were examined. In parallel the Monte Carlo com-
puter simulations were performed for the same model solutions. The com-
parison of the AMSA results with new and existing computer simulations
revealed the usefulness of the associated mean spherical approximation.
The present version of the AMSA is able to provide semi-quantitative or
better predictions for the excess internal energy and osmotic coefficient in
the region of parameters where the regular hypernetted chain (HNC) and
improved (associative) HNC fail to give convergent solutions. By assuming
complete association (infinitely strong sticky interaction), it was possible to
obtain AMSA predictions for the liquid�gas phase diagram of models with
different degrees of asymmetry between macroions and counterions.
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